Thermal Instability and Turbulence in the ISM

Alexei Kritsuk
CASS/UCSD
Outline

- TI basics
- TI-induced turbulence
- Sustaining turbulence with variable heating source
- Scaling relations for multiphase turbulence
- Thermal pancakes with AMR
TI Theory Highlights

- Linear stability of thermal equilibrium [Field 1965] 546
- Generic linear stability [Hunter 1970, 71] 10
- Phase equilibrium [Zel’dovich & Pikel’ner 1969] (62)
- Nonlinear thermal waves [Doroshkevich & Zel’dovich 1981] 12
- Thermal pancakes [Sasorov 1988] (10)
- Complexity from TI [Elphick et al. 1991] 16
- Two-phase model [FGH 1969] 419
- Three-phase model [McKee & Ostriker 1977] 973

(…) Web of Knowledge
TI Equations

Basic equations:

\[\frac{d\rho}{dt} + \rho \nabla \cdot \mathbf{v} = 0 \] \hfill (1)

\[\rho \frac{d\mathbf{v}}{dt} + \nabla p = 0 \] \hfill (2)

\[\frac{1}{\gamma - 1} \frac{dp}{dt} - \frac{\gamma}{\gamma - 1} \frac{d}{dt} \left(\frac{d\rho}{dt} \right) + \rho \mathcal{L}(\rho, T) - \nabla \cdot (\kappa \nabla T) = 0 \] \hfill (3)

Equation of state:

\[p - \frac{R}{\mu} \rho T = 0 \] \hfill (4)

Net cooling function:

\[\mathcal{L}(\rho, T) = \rho \Lambda(T) - \Gamma \] \hfill (5)

Initial conditions: uniform gas distribution in a box; zero velocities + isobaric density perturbations (3D PSD power index -3)

Boundary conditions: periodic box

Parameters: box size L, ρ_0, T_0, heating rate Γ, $\gamma = \frac{5}{3}$, metallicity $Z = Z_\odot$
TI-induced Turbulence
TI-induced Turbulence

low-density
Phase Diagram

Phase Diagram ($\Gamma=0.1; \text{5pc box}) @ t=0.000 \text{ Myr}$

- Isentropic
- 10^8 K
- 10^4 K
- 10^2 K
Phase Diagrams

Top left: first condensation at 0.07 Myr
Bottom left: turbulent relaxation at 0.17 Myr
Top right: turbulent relaxation at 0.5 Myr
Bottom right: two-phase medium at 1.5 Myr

Domain of isobaric instability – yellow
Domain of isochoric instability – magenta
Gas density PDFs – at the bottom of each panel (scale to the right)
Mach number vs. Density

Phase Diagram ($\Gamma=0.1$; 5pc box) @ $t=0.000$ Myr
Phase Transitions Stimulated by Time-dependent Heating

Interstellar Phase Transitions
response to time-dependent local FUV field

Low-density region

0.500 Myr

High-density region

1.000 Myr
Time Evolution of Global Variables

Top panel: \(\rho_{\text{max}} \)
\(\rho_{\text{min}} \)
\(\langle \rho^2 \rangle / \rho_0^2 \)
\(10 \langle \rho^2 \rangle / \langle \rho \rangle^2 \)

Middle panel: total energy
thermal energy
kinetic energy

Bottom panel: mass-weighted
\(\text{rms Mach number} \)
\(\text{rms enstrophy} \)
Phase Diagram
low-density

Phase Diagram (128D1T2L5S5) @ t=2.000 Myr

log \(\rho / k \) [K cm\(^{-3}\)]

log \(n \) [cm\(^{-3}\)]
Phase Fractions
low-density

mass fraction

t [Myr]
Phase Diagram

high-density
Energy Exchange
high-density

1.000 Myr
Scaling Relations for Turbulence in Multiphase ISM
TI-induced Turbulence
high-density
Phase Diagram

Phase Diagram (128DST2L1) @ t=0.000 Myr

- 10^6 K
- 10^4 K
- isentropic

Log P (dyn cm$^{-2}$)

Log ρ (g cm$^{-3}$)
Phase Fractions

![Graph showing phase fractions over time](image)

- F_{mass}
- F_{volume}

t (Myr)
Velocity Power Spectra
at 0.12, 0.56, 1.5, and 2.5 Myr

Kolmogorov
$k^{-5/3}$
k^{-2}

Burgers

$P(k)$

k

--- total
---------- compressional
---------------- solenoidal
Velocity Structure Functions

Longitudinal and *transverse* structure functions

\[
S_p(l) = \langle |u(x) - u(x + l)|^p \rangle \propto l^\zeta_p
\]
(1)

The value of ζ_2 is related to the scaling exponent for velocity power spectrum in the inertial range: $P(k) \propto k^{-1-\zeta_2}$.

Extended self-similarity [Benzi et al. 1993,96] \Rightarrow scaling exponents ζ_p relative to the third order exponent: $S_p \propto S_3^{\zeta_p/\zeta_3}$.

She-Lévêque [1994] formalism relates the dimensionality of the most dissipative structures D to the relative scaling exponents:

\[
\frac{\zeta_p}{\zeta_3} = (1 - \Delta) \Theta_p + \frac{\Delta}{1 - \beta} (1 - \beta \Theta_p)
\]
(2)

$\beta \equiv 1 - \Delta/(3 - D) \in (0, 1)$ measures the “degree of nonintermittency”.

The other two parameters represent nonintermittent scalings for velocity difference: $u_1 \propto l^\Theta$, and for eddy turnover time scale: $t_1 \propto l^\Delta$.

Kolmogorov cascade: $\Theta = 1/3$ and $\Delta = 2/3$.

In the limit $\beta \to 1$ the system is nonintermittent \Rightarrow K41 relation.

Since $\beta \to 0$ as $D \to 2\frac{1}{3}$, the model is only consistent with $D < 2\frac{1}{3}$.

Velocity Structure Functions
at 0.5 Myr (order 1, ..., 6)

ALL, t=0.100 Myr

longitudinal

transverse
Scaling Exponents
for velocity structure functions
Initial Rapid Cooling Stage
Structures within a slice at 0.12 Myr

Log density

Div u

Log($|\text{rot } u|$)
Structures at 0.12 Myr

density, vorticity, divergence, pressure
Structures at 0.12 and 0.56 Myr

Log density

Log |\text{curl} \ u|
Mach number vs. density at 0.56 Myr

Threshold density
Scaling Exponents at 0.56 Myr
Work in progress...
Thermal Pancakes with AMR
Thermal Pancakes with AMR