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Abstract. We use three-dimensional simulations to study the statistics of
supersonic turbulence in molecular clouds. Our numerical experiments describe
driven turbulent flows with an isothermal equation of state, Mach numbers
around 10, and various degrees of magnetization. We first support the so-called
1/3-rule of Kritsuk et al. (2007a) with our new data from a larger 20483 simu-
lation. We then attempt to extend the 1/3-rule to supersonic MHD turbulence
and get encouraging preliminary results based on a set of 5123 simulations. Our
results suggest an interesting new approach to tackle universal scaling relations
and intermittency in supersonic MHD turbulence.

1. Introduction

Supersonic turbulence plays an important role in shaping hierarchical internal
substructure of molecular clouds (MCs). Since the process of star formation be-
gins with the formation of dense cores, turbulence can be responsible for creating
initial conditions for star formation. It is hard to access the supersonic regimes
typical for MC turbulence in the laboratory and the information available from
observations is also limited. Thus numerical simulations currently represent the
only way to explore the statistics of supersonic turbulence, the key ingredient of
any successful statistical theory of star formation (Padoan et al. 2007; McKee
& Ostriker 2007). For a long time, the nature of highly compressible and mag-
netized interstellar turbulence remained poorly understood. We use large-scale
numerical simulations to shed light on the energy transfer between scales and
on the key spatial correlations of relevant fields in these flows.

2. The 1/3-rule for Supersonic Hydrodynamic Turbulence

In Kritsuk et al. (2007a, hereafter K07) we showed that homogeneous isotropic
turbulence in a strongly compressible regime typical for the interstellar gas can
be approximated by modified Kolmogorov’s laws since nonlinear advection still
remains the major physical process at work in the absence of magnetic fields.
The essence of the required modification boils down to the use of proper density
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Figure 1. A snapshot of the projected gas density from the 20483 Mach
6 turbulence simulation with PPM. White-blue-yellow colors correspond to
low-intermediate-high projected density values.

weighting for the gas velocity, which we call the “1/3-rule” of supersonic turbu-

lence. Replacing the velocity u by ρ1/3u, one can show that for this quantity
the 4/5-law of Kolmogorov (1941) approximately holds at sonic Mach number
as large as Ms = 6, when the plain velocity power spectrum already scales
as in Burgers turbulence, i.e. ∼ k2. The first von Kármán–Howarth (1938)
relation between the second-order transverse and longitudinal velocity struc-
ture functions also still holds approximately at Ms = 6. Although there is no
rigorous proof for any of these two fundamental exact incompressible laws in su-
personic regimes, the evidence provided by numerical experiments helps extend
Kolmogorov’s phenomenology to a wider class of problems of interest in turbu-
lence research and astrophysics. In K07 we showed that the low-order statistics
of ρ1/3u are invariant with respect to changes in the Mach number. For instance,
the slope of the power spectrum is −1.69, and the exponent of the third-order
structure function S3(ℓ) is unity, S3(ℓ) ≡

〈

|δu(ℓ)|3
〉

∼ ℓ.
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Figure 2. Statistics of supersonic turbulence from the 20483 simulation at
Ms = 6: (a) power spectrum of projected density (an ensemble average over
1275 projections); (b) average gas mass M(ℓ) for boxes centered around the
highest density peaks as a function of box size, the horizontal line corresponds
to a fractal mass dimension Dm = 2; (c) density pdfs for the 20483 simulation
with a solenoidal driving force (χ = 1) and for 10243 simulation with a hybrid
driving (χ = 0.6, K07); (d) compensated power spectrum of ρ1/3u.

Here we report on our more recent simulation with a grid resolution of 20483

carried out with the ENZO code on Bigben (PSC) and on Ranger (TACC) using
4096 cores (Fig. 1). The simulation details can be found in K07, except that
this new run employs a purely solenoidal large-scale driving force.

Turbulence statistics derived from these new data with unprecedented dy-
namic range confirm the convergence of our earlier results obtained with lower
resolution. Figure 2 provides a brief summary of the new statistics. The power
spectrum of projected gas density has a slope of −2.01 ± 0.01 in the inertial
range, consistent with the 3D density power index of −1.07 ± 0.01 reported in
K07 (Fig. 2a). The slopes of the power spectra of density and log density (not
shown) are very close to −1 and to −5/3, respectively. However, it is a mere
coincidence that at Mach 6 the slopes are represented by these “good” numbers,
since already at Ms = 10 they become shallower. Our new estimate for the
“fractal” dimension of the density distribution for the inertial range of Mach
6 turbulence, Dm ≈ 2.3, agrees well with the previously obtained value of 2.4
(Fig. 2b, see K07 for definition details). In the dissipation range, where individ-
ual shock fronts are the dominant structures, Dm = 2 (cf. Kritsuk et al. 2007b;
Schmidt et al. 2008; Pan et al. 2009; Schmidt et al. 2009). Figure 2c compares
the probability density functions (pdfs) of the gas density from simulations with
different driving forces. Both cases agree nicely with lognormal distributions at
high densities and show some divergence at low densities that can be at least
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partly attributed to poor statistical representation of violently evolving rarefac-
tions due to a limited number of flow snapshots used to derive the pdfs (100 for
the 20483 data and 170 for K07 data), cf. Lemaster & Stone (2008); Federrath

et al. (2008). Finally, Fig. 2d shows a sample power spectrum of ρ1/3u that also
confirms the scaling obtained in K07 based on a lower resolution simulations.

3. New Scaling Laws for Supersonic MHD Turbulence

We carried out a set of pilot simulations of driven isothermal supersonic tur-
bulence at the sonic Mach number of 10 on 5123 meshes to demonstrate the
performance of our new PPML solver for ideal MHD (Popov & Ustyugov 2007,
2008; Ustyugov et al. 2009). The models are initiated with a uniform magnetic
field aligned with the x-coordinate direction and cover the transition to turbu-
lence and its evolution for up to 10 dynamical times. A large-scale (k ≤ 2)
nonhelical solenoidal force is used to stir the gas in the periodic domain which
keeps Ms close to 10 during the simulation, see Fig. 3a. The magnetic field
is not forced and can receive energy only through interaction with the velocity
field. This random forcing does not generate a mean field, but still leads to am-
plification of the small-scale magnetic energy via a process known as small-scale
dynamo (Schekochihin & Cowley 2007, and references therein). It is implicitly
assumed that the magnetic Prandtl number Pm ≈ 1 in our numerical models.
Each simulation reaches a steady state with saturated magnetic energy and a
macroscopically statistically isotropic magnetic field, see Fig. 3b. The proper-
ties of this saturated state representing fully developed isotropic compressible
MHD turbulence is the main focus of this section. While some level of physical
understanding of small-scale dynamo and its saturation exists, the structure of
the saturated state is poorly known, even in the incompressible case (Yousef et
al. 2007).

Our models are parameterized by the ratios of thermal-to-magnetic pressure
β ≡ Pgas/Pmag . The initial values β0 = 20 and 2 translate into saturated levels
of the magnetic energy at about 10% and 30% of the kinetic energy, respectively
(Fig. 3b). In the β0 = 0.2 case we get a statistical steady state with energy
equipartition. The three simulations fully cover the transition from highly super-
Alfvénic regime of turbulence at β0 = 20 with the root mean square (rms)
Alfvénic Mach number MA ≈ 10 through mildly super-Alfvénic (β0 = 2, MA ≈
3) to trans-Alfvénic (β0 = 0.2, MA ≈ 1), see Fig. 3a. The mean normalized cross-
helicity σc ≡ 2 〈u ·B〉 /(

〈

u2
〉

+
〈

B2
〉

) is contained within ±1.5% for β0 = 20 and
2, while at β0 = 0.2 the cross-helicity oscillates somewhat more actively with
σc ∈ (−0.073, 0.015). Still, to a good approximation, the turbulence remains
nonhelical. In all three cases PPML keeps the divergence of the magnetic field
at all times to within |∇ · B| < 10−12. We computed time-average statistics
over at least four dynamical times for the saturated regimes. The results are
discussed below.

The dependence of the density pdf on the value of β0 shows a very clear
trend for substantially weaker rarefactions in the flows with stronger magnetic
field (smaller plasma β), see Fig. 3c. At a grid resolution of 5123, the aver-
age minimum density is about 10−3.6, 10−2.7, and 10−2 for β0 = 20, 2, and
0.2, respectively. At the same time, the high-density wing of the pdf preserves
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its lognormal shape and appears insensitive to the intensity level of magnetic
fluctuations within the studied range of β0.

The density power spectra also show some trends with the magnetic field
strength, although they are less pronounced than in the velocity spectra (see
below). For example, the power spectrum of the logarithm of projected gas den-
sity scales as k−1.79, k−1.64, and k−1.52 at β0 = 20, 2, and 0.2, respectively (see
also Sec. 2 above). The density spectrum for β0 = 20 (nearly nonmagnetized
medium) at Ms = 10 scales as k−0.7, i.e. it is shallower than in our nonmagne-
tized simulations at Ms = 6, where the k−1 scaling was recovered. This result
confirms K07 prediction that in the limit Ms → ∞ the density spectrum is flat,
P (ρ, k) ∼ k0, similar to the white noise spectrum. At a fixed sonic Mach number
(Ms = 10), as the flow magnetization increases (MA drops from 10 to 1), the
density spectra tend to flatten, see Fig. 3d. The same tendency is clear in the
power spectra of the logarithm of the density, with the slopes around −1.3 at
Ms = 10. This is consistent with a slope of −1.7 we measured at Ms = 6 and
β0 = ∞. We also observe a significant reduction in the extent of the scaling
interval in the log ρ spectra as β0 decreases from 20 to 0.2.

We measured a broad range of the velocity power indices from −1.5 through
−2 depending on the degree of magnetization (Fig. 3e). As expected, the
highly super-Alfvénic case β0 = 20 is very similar to K07 results for non-
magnetized flows, with a Burgers-like scaling of the velocity power spectrum,
P (u, k) ∼ k−1.94, and a Kolmogorov-like spectrum for the density-weighted ve-

locity, P (ρ1/3u, k) ∼ k−1.7 (Fig. 3f, also see Kowal & Lazarian 2007). There is
a clear trend for the velocity power spectra to get shallower at higher degrees of
magnetization. We get k−1.62 at β0 = 2 and k−1.51 at β0 = 0.2, consistent with
the Lemaster & Stone (2009) measurement for their strong-field case, k−1.38

at β0 = 0.02 and Ms = 6.9. This result suggests that slopes of the velocity
power spectra around −1.8 inferred from the observations of molecular clouds
(e.g., Padoan et al. 2006) may indicate a super-Alfvénic nature of the turbulence
there, see however a related discussion in Li et al. (2008).

There is a set of exact scaling laws for homogeneous and isotropic incom-
pressible MHD turbulence analogous to the 4/5-law of Kolmogorov for ordi-
nary turbulence in neutral fluids (Chandrasekhar 1951; Politano & Pouquet
1998a,b). The MHD laws can be expressed in terms of Elsässer fields, z± ≡
u ± B/

√
4πρ (Elsässer 1950), as S±

‖,3 ≡
〈

δz∓‖ (ℓ)[δz±i (ℓ)]2
〉

= −4

dǫ±ℓ, where

δz‖(ℓ) ≡ [z(x + êℓ) − z(x)] · ê, d is the space dimension, ê is a unit vector
with arbitrary direction, êℓ is the displacement vector, the brackets denote an
ensemble average, and summation over repeated indices is implied. Equiva-
lently, the scaling laws can be rewritten in terms of the basic fields (u, B),
but in MHD there are no separate exact laws for the velocity or the magnetic
field alone. It is important not to neglect the correlations between the u and
B fields or z+ and z− fields constrained by the invariance properties of the
equations in turbulent cascade models. In supersonic turbulence, it is equally
important to properly account for the density–velocity and density–magnetic
field correlations. In incompressible MHD, the total energy

〈

(u2
i + B2

i )/2
〉

and
the cross-helicity 〈u · B〉 play the role of ideal invariants and, thus, the (to-
tal) energy transfer rate ǫT = (ǫ+ + ǫ−)/2 and the cross-helicity transfer rate
ǫC = (ǫ+ − ǫ−)/2. For vanishing magnetic field B, one recovers the Kolmogorov
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Figure 3. Statistics of MHD turbulence at Ms = 10 and β0 = 20, 2, and 0.2
from PPML simulations at grid resolution of 5123 points: (a) rms sonic and
Alfvénic Mach numbers vs. time; (b) mean kinetic and magnetic energy vs.
time; (c) minimum gas density vs. time; (d) time-average compensated den-
sity power spectra; (e) time-average compensated velocity power spectra; (f)
time-average compensated power spectrum of ρ1/3u for β0 = 20; (g) time-
average compensated power spectra of magnetic energy; (h) time-average
compensated third-order structure functions S3(ℓ) for generalized Elsaässer
fields Z±, see text for the definition details.
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4/5-law,
〈

[δu‖(ℓ)]
3
〉

= −4/5ǫℓ, where ǫ is the mean rate of kinetic energy transfer
(Politano & Pouquet 1998b).

Numerical simulations generally confirm these incompressible scalings, al-
though the Reynolds numbers are perhaps still too small to reproduce the asymp-
totic linear behavior with a desired precision and the results are sensitive to
statistical errors (Biskamp & Müller 2000; Porter et al. 2002; Boldyrev et al.
2006). Often, the absolute value of the longitudinal difference is used and still
a linear scaling is recovered numerically, while there is no rigorous result for
the normalization constant in this case. The third-order transverse velocity
structure functions also show a linear scaling in simulations of nonmagnetized
turbulence (Porter et al. 2002, K07) and the difference of scaling exponents for
longitudinal and transverse structure functions can serve as a robust measure
of statistical uncertainty of the computed exponents (Kritsuk & Norman 2004).
In MHD simulations, the third-order structure functions of the Elsässer fields
〈

|δz∓‖ (ℓ)|3
〉

were shown to have an approximately linear scaling too (Biskamp &

Müller 2000; Momeni & Mahdizadeh 2008), but again there is no reason for this
result to universally hold in all situations since the correlations between the z±

fields play an important role in nonlinear transfer processes.
Can the 4/3-law for incompressible MHD turbulence be extended to highly

compressible supersonic regimes in molecular clouds? As we discussed above,
a proper density weighting of the velocity, ρ1/3u, preserves the approximately
linear scaling of the third-order structure functions at high Mach numbers in the
nonmagnetized case (for a more involved approach to density weighting see Pan
et al. 2009). It is straightforward to redefine the Elsas̈ser fields for compressible
flows using the 1/3-rule, Z± ≡ ρ1/3(u±B/

√
4πρ), so that they match the original

z± fields in the incompressible limit and reduce to ρ1/3u in the limit of vanishing
B. The new Z± fields can have universal scaling properties in homogeneous
isotropic turbulent flows with a broad range of sonic and Alfvénic Mach numbers.

We use data from our MHD simulations to find evidence to support or reject
this conjecture by computing the third-order structure functions S±

‖,3 and S±
⊥,3

defined above, but now based on the new Z± fields. Since we are interested in
the energy transfer through the inertial interval, we compute the sum of S−

‖,3

and S+

‖,3 which determines the energy transfer rate ǫT in the incompressible

limit. To further reduce statistical errors, we had to combine the transverse
and longitudinal structure functions, but the absolute value operator was not
applied to the field differences. The results are plotted in Fig. 3h, which shows
the compensated scaling for S3(ℓ) ≡ (S−

‖,3 + S+

‖,3 + S−
⊥,3 + S+

⊥,3)/4 averaged over

about two dozen snapshots for each of the three saturated turbulent states with
different levels of magnetic fluctuations. Although the scaling range is rather
short in 5123 numerical data, each of the three cases clearly demonstrates a
linear behavior S3(ℓ) ∼ ℓ, in contrast to the corresponding scaling of the velocity
or the magnetic energy which strongly depend on β0, see Fig. 3e and g. As a
consistency check, we computed S̃3(ℓ) ≡ (S−

‖,3+S+

‖,3)/2 for both plain z± fields and

for density-weighted Z± fields at β0 = 2. We then compared the scaling S̃3 ∼ ℓα

for the two cases and found that the plain Elsässer fields result in a steeper slope,
∆α ≡ αz − αZ ≈ 0.23. K07 measured a similar slope difference, ∆α ≈ 0.31,
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for the third-order longitudinal velocity structure functions in nonmagnetized
turbulence at Ms = 6.

While larger simulations are definitely needed to confirm the linear scaling,
we believe that our preliminary evidence suggests an interesting new approach
to tackle universal scaling relations and intermittency in compressible MHD
turbulence.

4. Conclusions

We further supported the 1/3-rule of K07 for hydrodynamic supersonic turbu-
lence with new data from a larger simulation at Ms = 6 on a grid of 20483 points.
Based on a series of 5123 MHD turbulence simulations at Ms = 10, we explored
universal trends in scaling properties of various statistics as a function of the
magnetic field strength. Our data suggest that the 4/3-law of incompressible
MHD can be extended to supersonic flows.
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